
Implementations of Exponential Time
Differencing Methods for Allen–Cahn

Equations in Programming

Pinzhong Zheng

October 6, 2024

Abstract

In this note, the utilization of the Fast Fourier Transform (FFT)
and its variations to implement Exponential Time Differencing (ETD)
methods for Allen–Cahn equations on a regular mesh in Rd for d =
1, 2, 3 is demonstrated. Three types of boundary conditions will be dis-
cussed: Dirichlet boundary conditions, periodic conditions, and Neu-
mann conditions. This note builds upon previous preliminary codes
for ETDRK methods for the Allen-Cahn equations and is inspired by
[1].

Contents

1 Introduction 1

2 FFT-based Numerical Methods in One Dimensions 2
2.1 The Problem with Periodic Boundary Conditions 3
2.2 The Problem with Dirichlet Boundary Conditions 5
2.3 The Problem with Neumann Boundary Conditions 7

3 FFT-based Numerical Methods in Two Dimensions 8

4 FFT-based Numerical Methods in Three Dimensions 10

5 Circular Matrix and FFT 11

I

1 Introduction

Consider an open rectangular domain Ω ∈ Rd for d = 1, 2, 3 and a given
time interval T > 0. We aim to solve numerically the semilinear parabolic
equations of the following form:

ut = D∆u+ f(u), x ∈ Ω, t ∈ [t0, t0 + T],

where D denotes the diffusion coefficient. Equations of this type are of broad
interest as they model various physical phenomena. To illustrate, consider
the widely used phase-field model, the Allen–Cahn equation:{

ut = ε2∆u+ f(u), x ∈ Ω, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ Ω̄,
(1)

equipped with dirichlet, periodic or Neumann boundary conditions. Here, ∆
representing the Laplacian operator over d dimensions, the unknown function
u denotes the phase variable, and the parameter ε > 0 represents the inter-
facial width. The nonlinear term f(u) = −F ′(u), where F is a double-well
potential with two wells at ±β for some β > 0. More precisely, f : R → R is
a continuously differentiable function satisfying:

∃ a constant β > 0, such that f(β) ≤ 0 ≤ f(−β). (2)

A notable feature of the Allen–Cahn equation is the maximum bound
principle (MBP), i.e., if the initial values are within β in absolute value,
the solution remains bounded by β at all times. Furthermore, this model
satisfies the so-called energy dissipation law, because (1) can be viewed as an
L2 gradient flow with respect to the energy functional:

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx. (3)

The energy dissipation law is more precisely formulated as:

d

dt
E(u) =

(
δE(u)

δu
,
∂u

∂t

)
= −∥∂tu∥2 ≤ 0, ∀t > 0, (4)

where (·, ·) and ∥ · ∥ represent the standard L2 inner product and norm.
Assume that f satisfies the Lipschitz condition with a Lipschitz constant

Cl, i.e.,
|f(u)− f(v)| ≤ Cl|u− v| ∀u, v ∈ R. (5)

1

Following this, we introduce a stabilizing constant κ, satisfying:

κ ≥ Cl. (6)

By adding and subtracting a stabilization term κu to the Allen–Cahn equa-
tion (1), we derive an equivalent form of (1)

ut = Lu+N (u), x ∈ Ω, t ∈ (0, T], (7)

where the linear operator L and nonlinear operator N are defined as

L := ε2∆− κI, N := f + κI, (8)

and I denotes the identity operator.
Given a positive integer Nt, let the time interval [0, T] be divided into Nt

subintervals with a uniform time step τ = T/Nt, and define tn = nτ, n =
0, 1, · · · , N . To solve the Allen–Cahn equation (1), we focus on the equiv-
alent equation (7) over the interval [tn, tn+1], or equivalently wn(x, s) =
u (x, tn + s) satisfying the system{

∂sw
n = Lwn +N (wn), x ∈ Ω, s ∈ (0, τ],

wn(x, 0) = u (x, tn) , x ∈ Ω̄.
(9)

The central concept of ETD involves applying Duhamel’s principle to the
system, which leads to the following formulation:

wn(x, τ) = eτLwn(x, 0) +

∫ τ

0

e(τ−s)LN [wn(x, s)] ds (10)

and then approximating the nonlinear function N [u(tn + s)] in the integral.
Employing interpolation to approximate N [u(tn + s)] leads to the develop-
ment of ETD Runge–Kutta (ETDRK) methods.

2 FFT-based Numerical Methods in One Di-

mensions

Fast explicit numerical methods are derived for the model in one dimension.
Suppose Ω = {xb < x < xe}. The spatial domain is discretized using a
uniform rectangular mesh as follows: xi = xb + ihx for 0 ≤ i ≤ Nx, where
hx = (xe − xb)/Nx. The numerical solution at each mesh point is denoted
by ui = ui(t) ≈ u(xi, t) for 0 ≤ i ≤ Nx. A second-order accurate central
difference discretization scheme is employed for approximating the Laplace
operator.

2

2.1 The Problem with Periodic Boundary Conditions

Suppose that the model (1) is equipped with a periodic boundary condition
as

u(xb, t) = u(xe, t),
∂u

∂x
(xb, t) =

∂u

∂x
(xe, t), t ∈ [0, T],

is imposed, then the set of unknowns is given as

u = {ui}(Nx−1)×1 =

u0

u1
...

uNx−1

 .

Let

(
∆P

h

)
n×n

:=

−2 1 0 0 · · · 1
1 −2 1 0 · · · 0

.

0 · · · 0 1 −2 1
1 · · · 0 0 1 −2

n×n

for n ∈ N+.
Then we can write the semi-discretization of (9) in space in the following

compact representation:

du

dt
= Lu− κu+N (u),

where LP :=
ε2

h2
x

(
∆P

h

)
Nx×Nx

. The corresponding Duhamel’s principle is

un+1 = eτLκun +

∫ τ

0

e(τ−s)LκN [u (tn + s)] ds, (11)

where Lκ := LP −κI. Applying the theory of circular matrices, the following
lemma presents the eigen-pairs of the circular matrix ∆D

h of dimensions n×n.

Lemma 2.1. The eigen-pairs of the circular matrix
(
∆P

h

)
n×n

is

λk = −2 + wk + wk(n−1) = 2(cos
2kπ

n
− 1),

ϕ⃗k = (1, wk, w2k, ..., w(n−1)k)T ,

(12)

where w := e−i 2π
n is the principal n-th root of unity, and k = 0, 1, . . . , n− 1.

3

Since ΦΦH = ΦHΦ = nI, the eigen-decomposition of ∆P
h is(

∆P
h

)
n×n

=
1√
n
Φ
(
ΛP

)
n×n

1√
n
ΦH ,

whereΦ =
[
ϕ⃗0, ϕ⃗1, . . . , ϕ⃗n−1

]
. Please note thatΦ is the matrix of the discrete

Fourier transform (DFT) and 1
n
ΦH is the matrix of the discrete Fourier

transform (iDFT).

Lemma 2.2. For two matrice A,P , if P is invertible, then ePAP−1
= PeAP−1.

This lemma can be proved directly by using the definition of matrix ex-
ponential, i.e. the series form. To compute (11), the most challenging aspect
involves computing the products of exp(L) and Lk with vectors. When the
spatial domain of the problem is regular and the matrix L possesses specific
structural properties, such as being a circular matrix, algorithms based on
the Fast Fourier Transform (FFT) are particularly effective for calculating
these products.

Generally, we consider

aLP + bI =
1√
n
Φ

(
a
ε2

h2
x

(ΛP)Nx×Nx + bI

)
1√
n
ΦH .

For simplicity, we denote the middle diagonal matrix as Λ1. Consider the
function

g(z) =

ng∑
i=1

cie
aizpi(z),

where ai, ci ∈ R, and pi is a polynomial. For LP ∈ Rn×n and any vector
v ∈ Rn×1, the FFT can be used to compute g(aLP + bI)v. More precisely,

g(aLP + bI)v = g(
1√
n
ΦΛ1

1√
n
ΦH)v

=
1√
n
Φg (Λ1)

1√
n
ΦHv

= Φg (Λ1)

(
1

n
ΦH

)
v

= DFT [g (diag (Λ1))⊙ iDFT (v)] ,

(13)

where diag(A) denotes the diagonal vector of A, and ⊙ denotes element by
element multiplication between two arrays of same sizes. The computational
complexity of (13) is 2O(n log2 n)+O(n) = O(n log2 n), while the complexity
of direct computation of LPv is O(n2).

4

2.2 The Problem with Dirichlet Boundary Conditions

Suppose that the model (1) is equipped with a Dirichlet boundary condition

u(x, t) = α(x, t), x ∈ ∂Ω, t ∈ [0, T].

In this case, the set of unknowns is given as

u = {ui}(Nx−1)×1 =

u1

u2
...

uNx−1

 .

Let

bD :=
ε2

h2
x

α (x0, t)

0
...
0

α (xNx , t)

(Nx−1)×1

,

and

(
∆D

h

)
n×n

:=

−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

.

0 · · · 0 1 −2 1
0 · · · 0 0 1 −2

n×n

for n ∈ N+.
Then we can write the semi-discretization of (9) in space in the following

compact representation:

du

dt
= Lu− κu+ bD +N (u),

where LD :=
ε2

h2
x

(
∆D

h

)
(Nx−1)×(Nx−1)

. The corresponding Duhamel’s principle

is

un+1 = eτLκun +

∫ τ

0

e(τ−s)Lκ
{
bD(tn + s) +N [u (tn + s)]

}
ds, (14)

where Lκ := LD − κI.
In this case, LD is not a circular matrix, but a topeliz matirx. The DFT

will become discrete sine transform (DST). We have similar lemma:

5

Lemma 2.3. The eigen-pairs of the circular matrix
(
∆D

h

)
n×n

is

λk = 2(cos
kπ

n+ 1
− 1),

ϕ⃗k =

(
sin

kπ

n+ 1
, sin

2kπ

n+ 1
, ..., sin

nkπ

n+ 1

)T

,

(15)

where k = 1, 2, . . . , n.

Since ΦΦH = ΦHΦ = n+1
2
I, the eigen-decomposition of ∆D

h is

(
∆D

h

)
n×n

=

√
2

n+ 1
Φ
(
ΛD

)
n×n

√
2

n+ 1
ΦH ,

where Φ =
[
ϕ⃗1, ϕ⃗2, . . . , ϕ⃗n

]
. Please note that Φ is the matrix of the discrete

Sine transform (DST) and 2
n+1

ΦH is the matrix of the discrete Sine transform
(iDST).

Generally, we consider

aLD + bI =

√
2

Nx

Φ

(
a
ε2

h2
x

(ΛD)(Nx−1)×(Nx−1) + bI

)√
2

Nx

ΦH .

For simplicity, we denote the middle diagonal matrix as Λ1. Consider the
function

g(z) =

ng∑
i=1

cie
aizpi(z),

where ai, ci ∈ R, and pi is a polynomial. For LD ∈ Rn×n and any vector
v ∈ Rn×1, the fast DST can be used to compute g(aLD+bI)v. More precisely,

ϕ(aLD + bI)v = g(

√
2

n+ 1
ΦΛ1

√
2

n+ 1
ΦH)v

=

√
2

n+ 1
Φg (Λ1)

√
2

n+ 1
ΦHv

= Φg (Λ1)

(
2

n+ 1
ΦH

)
v

= DST (g (diag (Λ1))⊙ iDST (v)) ,

(16)

where diag(A) denotes the diagonal vector of A, and ⊙ denotes element by
element multiplication between two arrays of same sizes. The computational
complexity of (13) is 2O(n log2 n) + O(n) = O(n log2 n), whereas the com-
plexity of directly computing LDv is O(n2). There are multiple methods to

6

achieve fast DST via FFT. Please read [2] and the Signal Processing Stack
Exchange for more information. One convenient approach involves using 2n
FFT padding as described in [2]:

−2 1 1
1 −2 1

. . .

1 −2 1
1 −2 1

. . .

1 −2 1
1 1 −2

u1

u2
...

uNx−1

0
...
0
0

(1 : Nx − 1).

2.3 The Problem with Neumann Boundary Conditions

Suppose that the model (1) is equipped with a Neumann boundary condition

∂u

∂x
= β(x, t), x ∈ ∂Ω, t ∈ [0, T].

In this case, the set of unknowns is given as

u = {ui}(Nx−1)×1 =

u0

u1
...

uNx

 .

Let

bN :=
2ε

hx

β (x0, t)

0
...
0

β (xNx , t)

(Nx+1)×1

,

and

(
∆N

h

)
n×n

:=

−2 2 0 0 · · · 0
1 −2 1 0 · · · 0

.

0 · · · 0 1 −2 1
0 · · · 0 0 2 −2

n×n

for n ∈ N+.

7

https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft
https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft

Then we can write the semi-discretization of (9) in space in the following
compact representation:

du

dt
= LNu− κu+ bN +N (u),

where LN :=
ε2

h2
x

(
∆N

h

)
(Nx+1)×(Nx+1)

. The corresponding Duhamel’s principle

is

un+1 = eτLκun +

∫ τ

0

e(τ−s)Lκ
{
bN(tn + s) +N [u (tn + s)]

}
ds, (17)

where Lκ := LN − κI. In this case, LN is neither a circular matrix nor
a Toeplitz matrix. To employ a FFT-based fast algorithm, we must make
specific modifications. An effective and equivalent approach is to apply sym-
metric extension to the unknowns U in each direction, achieving a periodic
scenario [3]. This allows us to still solve the problem within the original
domain. More precisely,

−2 1 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 −2 1
1 −2 1

. . .

1 −2 1
1 1 −2

u0

u1
...

uNx

uNx+1

uNx

uNx−1
...
u1

(1 : Nx + 1).

3 FFT-based Numerical Methods in Two Di-

mensions

In Section 2, we know that three types boundary conditions can be treated
by FFT. In fact, the 2D and 3D cases are similar.

Suppose Ω = {xb < x < xe, yb < y < ye}. Let us discretize the spatial
domain by a rectangular mesh which is uniform in each direction as follows:
(xi, yj) = (xb + ihx, yb + jhy) for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny with hx =
(xe − xb)/Nx and hy = (ye − yb)/Ny. Let ui, j = ui,j(t) ≈ u(t, xi, yj) for
0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny denote the numerical solution. We will

8

use the second-order accurate central difference discretization scheme for
the spatial derivative terms. Let us further discretize the time period as
tn = t0 + n∆t, n = 1, . . . , Nt with ∆t = T/Nt.

The set of unknown is given as

U = {ui,j}m×n =

u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n
...

...
. . .

...
um,1 um,2 · · · um,n

 . (18)

It is easy to check that

(Iy ⊗∆x
h +∆y

h ⊗ Ix) vec (U) ≈ ∆(vecU). (19)

In fact, Iy ⊗∆x
h + ∆y

h ⊗ Ix represents the 2D DFT. Using (AB) ⊗ (CD) =
(A⊗ C)(B ⊗D), we have

I ⊗ A =
(
QIQH

)
⊗ (QΛQH)

= (Q⊗Q)(I ⊗ Λ)(QH ⊗QH).
(20)

Note that (Q⊗Q)(QH ⊗QH) = (QH ⊗QH)(Q⊗Q) = I, so by lemma 2.2,
we have the 2D eigen decomposition.

Iy ⊗∆x
h +∆y

h ⊗ Ix = (Qy ⊗Qx)(Iy ⊗ Λx + Λy ⊗ Ix)(Qy ⊗Qx)H

Iy ⊗∆x
h +∆y

h ⊗ Ix = ((Qy)H ⊗Qx)(Iy ⊗ Λx + Λy ⊗ Ix)(Qy ⊗ (Qx)H)

Iy ⊗∆x
h +∆y

h ⊗ Ix = (Qy ⊗ (Qx)H)(Iy ⊗ Λx + Λy ⊗ Ix)((Qy)H ⊗Qx)

Iy ⊗∆x
h +∆y

h ⊗ Ix = ((Qy)H ⊗ (Qx)H)(Iy ⊗ Λx + Λy ⊗ Ix)(Qy ⊗Qx)

This is the separability of 2D DFT.
Since vec(AXB) = (BT ⊗ A)vec(X) and (Q is symmetric), we have

(QH ⊗QH)vec(M) = vec(QHMQH),

(Q⊗Q)vec(M) = vec(QMQ).
(21)

9

Then we can compute QHMQH in this way,

QHMQH =
1

n
ΦHMΦH =

1

n
ΦH

(
ΦMH

)H
(22)

and compute QMQ similarly,

QMQ = ΦM(
1

n
Φ) = Φ[(

1

n
ΦH)MH]H . (23)

Note that Φ is DFT, 1
n
ΦH is iDFT.

4 FFT-based Numerical Methods in Three

Dimensions

Let Ω = {xb < x < xe, yb < y < ye, zb < z < ze}. We present the case with a
Dirichlet boundary condition as u = g on ∂Ω and discussions on other bound-
ary condition cases simply follow. Similar to solving the two-dimensional
system, we denote hx, hy, hz as the spatial step size, and Nx, Nγ, Nz as the
number of grid intervals in x, y, z direction, respectively.

Set ui,j,k = ui,j,k(t) ≈ u(t, xi, yj, zk) for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny and
0 ≤ k ≤ Nz. Denote the unknowns as a three-dimensional array U =
(ui,j,k)(Nx−1)×(Ny−1)×(Nz−1). Define the vector of U:

vec2(U) =

vec(U(:, :, 1))
vec(U(:, :, 2))

...
vec(U(:, :, n3))

 .

Then it is easy to check

(Iz ⊗ (Iy ⊗∆x
h +∆y

h ⊗ Ix) + ∆z
h ⊗ (Iy ⊗ Ix)) vec (U) ≈ ∆(vecU). (24)

Then
I ⊗ I ⊗ A =

(
QIQH

)
⊗ [(Q⊗Q)(I ⊗ Λ)(QH ⊗QH)]

= (Q⊗Q⊗Q)(I ⊗ I ⊗ Λ)(QH ⊗QH ⊗QH).
(25)

Then

vec−1
2 [(Q⊗Q⊗Q)vec2(U)](r, s, t) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

ui,j,k · e
−2πi

(
ri
n1

+ sj
n2

+ tk
n3

)

is a 3D FFT.

10

Iz ⊗ Iy ⊗∆x
h + Iz ⊗∆y

h ⊗ Ix +∆z
h ⊗ Iy ⊗ Ix

=
(
QzIz(Qz)H

) [
(Qy ⊗Qx)(Iy ⊗ Λx + Λy ⊗ Ix)(Qy ⊗Qx)H

]
+∆z

h ⊗ Iy ⊗ Ix

= (Qz ⊗Qy ⊗Qx)(Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗ Ix)(Qz ⊗Qy ⊗Qx)H

+ (Qz ⊗Qy ⊗Qx)(Λz ⊗ Iy ⊗ Ix)(Qz ⊗Qy ⊗Qx)H

(26)

(Qz ⊗Qy ⊗Qx)vec2(U)

= (Qz ⊗ (Qy ⊗Qx))vec (vec(U(:, :, 1)), vec(U(:, :, 2)), . . . , vec(U(:, :, n3)))

= vec {(Qy ⊗Qx) (vec(U(:, :, 1)), vec(U(:, :, 2)), . . . , vec(U(:, :, n3)))Q
z}

= vec

{
(Qy ⊗Qx)

[
(Qz)H (vec(U(:, :, 1)), vec(U(:, :, 2)), . . . , vec(U(:, :, n3)))

H
]H}

(27)
Maybe the matrix form is not the best.

5 Circular Matrix and FFT

Definition 5.1. A circular matrix is like

A =

a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

...
a1 a2 a3 · · · a0

 . (28)

A special circular matrix is

J =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

 . (29)

It is easy to know that Jk is also a circular matrix.

Jk =

(
0 In−k

Ik 0

)
(1 ≤ k ≤ n). (30)

11

Thus, A = a0I + a1J + ...+ an−1J
n−1. If we define a polynomial g(x) :=

a0 + a1x+ a2x
2 + ...+ an−1x

n−1, then A = g(J).
It is easy to know that the eigenvalues of J are principal roots of order n

of uinty wk = e−
k
n
2πi(k = 0, 1, 2, ..., n− 1) because |λI − J | = λn − 1. And it

is easy to compute that the corresponding eigenvectors are

ϕ⃗k = (1, wk, w2k, ..., w(n−1)k)T , k = 0, 1, 2, ..., n− 1. (31)

Therefore, we have the next throrem:

Theorem 5.2. The eigen-pairs of the circular matrix A is

λk = g(wk), k = 0, 1, 2, ..., n− 1,

ϕ⃗k = (1, wk, w2k, ..., w(n−1)k)T , k = 0, 1, 2, ..., n− 1.
(32)

Note that ϕ⃗k(k = 0, 1, 2, ..., n − 1) form the matrix of discrete Fourier
transformation (DFT).

Definition 5.3. For a continuous Fourier transformation F (w) =
∫ +∞
−∞ f(t)e−iwtdt,

its discrete transformation is

F (wn) =
N−1∑
m=0

f (tm) e
−i 2πmn

N , (33)

and the inverse discrete Fourier transformation is

f (tm) =
1

N

N−1∑
n=0

F (wn) e
i 2πmn

N . (34)

By this definition, the DFT can be written as
F (w0)
F (w1)

...
F (wN−1)

 =

1 1 1 · · · 1
1 w1

N w2
N · · · wn−1

N
...

...
...

...
...

1 w
(n−1)
N w

2(n−1)
N · · · w

(n−1)2

N

f(t0)
f(t1)
...

f(tN−1)

 , (35)

where w := e−i 2π
n is the principal n-th root of unity.

As we all know, the computation can be fasten by FFT. Here is a simple
discussion. The starting point is to examine the block structure of an even-
order DFT matrix after its columns are reordered so that the odd-indexed

12

columns come first. Consider the case

F8 =

1 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 w6 w7

1 w2 w4 w6 1 w2 w4 w6

1 w3 w6 w w4 w7 w2 w5

1 w4 1 w4 1 w4 1 w4

1 w5 w2 w7 w4 w w6 w3

1 w6 w4 w2 1 w6 w4 w2

1 w7 w6 w5 w4 w3 w2 w

(w = w8)

(Note that w8 is a root of unity so that high powers simplify.) If cols =
[1, 3, 5, 7, 2, 4, 6, 8], then

F8(:, cols) =

1 1 1 1 1 1 1 1
1 w2 w4 w6 w w3 w5 w7

1 w4 1 w4 w2 w6 w2 w6

1 w6 w4 w2 w3 w w7 w5

1 1 1 1 −1 −1 −1 −1
1 w2 w4 w6 −w −w3 −w5 −w7

1 w4 1 w4 −w2 −w6 −w2 −w6

1 w6 w4 w2 −w3 −w −w7 −w5

.

The lines through the matrix are there to help us think of F8(:, cols) as a
2-by-2 matrix with 4 -by- 4 blocks. Noting that w2 = w2

8 = w4, we see that

F8(:, cols) =

[
F4 Ω4F4

F4 −Ω4F4

]
,

where Ω4 = diag (1, w8, w
2
8, w

3
8) . It follows that if x ∈ R8 , then

F8x = F8(:, cols) · x(cols) =[
F4 Ω4F4

F4 −Ω4F4

] [
x(1 : 2 : 8)

x(2 : 2 : 8)

]
=

[
I4 Ω4

I4 −Ω4

] [
F4x(1 : 2 : 8)
F4x(2 : 2 : 8)

]
Thus, if N = 2k, then the complexity of k-step is T (k) = 2T (k

2
) +O(N),

so the all complexity is O(N log2N) We can use FFT to compute the eigen
decomposition of circular matrice. Firstly, let us see a lemma:

Lemma 5.4. For principal roots of order n of uinty wk = e−ik/n(k =
0, 1, 2, ..., n− 1), if wk ̸= 1, then

1 + wk + w2k + · · ·+ w(n−1)k = 0.

13

It is very simple to prove because

0 = (wk)n − 1 = (wk − 1)(1 + wk + w2k + · · ·+ w(n−1)k).

Using this lemma, we have

Corollary 5.5. ϕ⃗k = (1, wk, w2k, ..., w(n−1)k)T , (k = 0, 1, 2, ..., n−1) are con-
jugate orthogonal.

Because

ϕ⃗k

H
ϕ⃗l = 1 + wl−k + w2(l−k) + · · ·+ w(n−1)(l−k) = nδk,l.

Theorem 5.6. If we note the DFT matrix as Φ, then the eigen decomposition
of the circular matrix C is

C =
1√
n
Φ · Λ · 1√

n
ΦH =

1

n
ΦΛΦH .

14

References

[1] Lili Ju, Jian Zhang, Liyong Zhu, and Qiang Du. Fast Explicit Integration
Factor Methods for Semilinear Parabolic Equations. Journal of Scientific
Computing, 62(2):431–455, 2014. (document)

[2] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(1):27–34,
1980. 2.2

[3] A. Wiegmann. Fast poisson, fast helmholtz and fast linear elastostatic
solvers on rectangular parallelepipeds. Paper LBNL-43565, Lawrence
Berkeley National Laboratory, 1999. 2.3

15

	Introduction
	FFT-based Numerical Methods in One Dimensions
	The Problem with Periodic Boundary Conditions
	The Problem with Dirichlet Boundary Conditions
	The Problem with Neumann Boundary Conditions

	FFT-based Numerical Methods in Two Dimensions
	FFT-based Numerical Methods in Three Dimensions
	Circular Matrix and FFT

